In situ electrochemical synchrotron radiation for Li-ion batteries.

نویسندگان

  • Tibebu Alemu
  • Fu Ming Wang
چکیده

Observing the electronic structure, compositional change and morphological evolution of the surface and interface of a battery during operation provides essential information for developing new electrode materials for Li-ion batteries (LIBs); this is because such observations demonstrate the fundamental reactions occurring inside the electrode materials. Moreover, obtaining detailed data on chemical phase changes and distributions by analyzing an operating LIB is the most effective method for exploring the intercalation/de-intercalation process, kinetics and the relationship between phase change or phase distribution and battery performance, as well as for further optimizing the material synthesis routes for advanced battery materials. However, most conventional in situ electrochemical techniques (other than by using synchrotron radiation) cannot clearly or precisely demonstrate structural change, electron valence change and chemical mapping information. In situ electrochemical-synchrotron radiation techniques such as X-ray absorption spectroscopy, X-ray diffraction spectroscopy and transmission X-ray microscopy can deliver accurate information regarding LIBs. This paper reviews studies regarding various applications of in situ electrochemical-synchrotron radiation such as crystallographic transformation, oxidation-state changes, characterization of the solid electrolyte interphase and Li-dendrite growth mechanism during the intercalation/de-intercalation process. The paper also presents the findings of previous review articles and the future direction of these methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Evaluation of PbO Nanoparticles as Anode for Lithium Ion Batteries (Technical Note)

PbO nanoparticles were synthesized using hydrothermal process. Scanning electron microscopy (SEM) was used in order to investigate of PbO powders. X-ray diffraction (XRD) pattern confirmed β-PbO formation during this process. The crystallite size of the powders was calculated using Scherrer formula about 74.6 nm. Electrochemical evaluation of the PbO nanoparticles as anode for Li-ion batteries ...

متن کامل

Electrochemical properties of iron oxide nanoparticles as an anode for Li-ion batteries

The synthesis of iron oxide nano-particles by direct thermal decomposition was studied. Simultaneous thermal analysis and Fourier transform infrared spectroscopy results confirmed the formation of iron-urea complex, and disclosed iron oxide formation mechanism. Calcination of the iron-urea complex at 200°C and 250°C for 2 hrs. resulted in the formation of maghemite along with hematite as a seco...

متن کامل

In situ XAFS study on cathode materials for lithium-ion batteries.

Ni and Co K-edge X-ray absorption spectra of LiNi0.8Co0.2O2 have been collected using in situ coin cells. To investigate the electronic and structural changes accompanied by the capacity fading during electrochemical cycling and keeping batteries at high temperatures, the cells with different cycling states and keeping conditions (temperature, time) were prepared. Upon charging the cell, the Ni...

متن کامل

Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery

Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...

متن کامل

Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques.

Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of synchrotron radiation

دوره 25 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2018